67 research outputs found

    Link level modelling techniques for analysing the configuration of link adaptation algorithms in mobile radio networks

    Get PDF
    The operation of Link Adaptation algorithms is based on channel quality estimates. It is therefore important to analyse the performance of such algorithms with link level models that properly capture the channel conditions and dynamics. Previous research [1] concluded that the use of simple link level models does not give an accurate prediction of the estimated performance of Link Adaptation algorithms. Following this previous work, this paper shows that the link level model considered for the study of Link Adaptation algorithms can also influence the decisions regarding the optimum configuration of the algorithm

    On the importance of using appropriate link-to-system interfaces for the study of link adaptation

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. It is therefore very important, when analysing the performance and operation of Link Adaptation, to properly capture such conditions and dynamics. In this context, this paper investigates the effect that different link-to-system level interfaces have on the study of Link Adaptation, in particular on its throughput performance and associated signalling cost

    Performance and configuration of link adaptation algorithms with mobile speed

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. Previous work has shown the need to adapt the configuration of the Link Adaptation algorithm to certain operating conditions such as the system load. Since the channel quality dynamics are also influenced by the user speed, this paper investigates the impact of the mobile speed on the performance and configuration of Link Adaptation algorithm

    Reputation based selfishness prevention techniques for mobile ad-hoc networks

    Get PDF
    Mobile ad-hoc networks require nodes to cooperate in the relaying of data from source to destination. However, due to their limited resources, selfish nodes may be unwilling to forward packets, which can deteriorate the multi-hop connectivity. Different reputation-based protocols have been proposed to cope with selfishness in mobile ad-hoc networks. These protocols utilize the watchdog detection mechanism to observe the correct relaying of packets, and to compile information about potential selfish nodes. This information is used to prevent the participation of selfish nodes in the establishment of multi-hop routes. Despite its wide use, watchdog tends to overestimate the selfish behavior of nodes due to the effects of radio transmission errors or packet collisions that can be mistaken for intentional packet drops. As a result, the availability of valid multi-hop routes is reduced, and the overall performance deteriorates. This paper proposes and evaluates three detection techniques that improve the ability of selfishness prevention protocols to detect selfish nodes and to increase the number of valid routes.IngenierĂ­a, Industria y ConstrucciĂł

    Optimizing Adaptive Transmission Policies for Wireless Vehicular Communications

    Get PDF
    Abstract—The adoption of wireless vehicular communication technologies would strongly depend on the technologies transmission reliability, required by QoS demanding traffic safety applications, and the system’s scalability as the technology is gradually introduced. To this aim, this work proposes the use of opportunistic transmission policies that dynamically adapt the transmission parameters based on the operating conditions and potential traffic safety risks. The work analyses different configuration proposals with the aim to meeting the strong traffic safety QoS requirements, while maximizing the technology’s robustness and minimising channel congestion, which in turn is crucial to guarantee the future system’s scalability

    Link Level Analysis of NR V2X Sidelink Communications

    Get PDF
    The Internet of Vehicles (IoV) will interconnect vehicles, vulnerable road users, and infrastructure nodes for a safer, more efficient, and digitalized mobility. In the IoV vision, traditional network-based communications will be complemented with direct Sidelink (SL) Vehicle-to-Everything (V2X) communications. To this aim, 3GPP introduced in Release 16 the New Radio (NR) V2X SL technology. The NR V2X SL standard includes important Physical (PHY) layer novelties with respect to LTE V2X SL and NR Uplink/Downlink, and is characterized by a large set of configurable parameters. However, existing NR V2X SL link level studies focus on a confined set of configurations. This limits a thorough understanding of the NR V2X SL link level performance and impacts the accuracy of system level evaluations, which typically leverage link level models to accurately represent the PHY layer performance. These models are based on Look-Up Tables (LUTs) that map the link level performance, e.g., BLock Error Rate (BLER), as a function of the link quality, e.g., Signalto-Noise Ratio (SNR). This study presents an exhaustive NR V2X SL link level evaluation that analyzes the impact of relevant PHY layer aspects, e.g., modulation and coding scheme, channel model, and transmitter-receiver relative speed, considering the wide set of configurations recommended by 3GPP and ETSI. The obtained standard-compliant LUTs are openly released, representing the largest NR V2X SL link level dataset available. The released dataset represents a valuable asset for the community, as it allows exhaustive NR V2X SL system level investigations under a broad range of settings and configurations

    On the Impact of Re-Evaluation in 5G NR V2X Mode 2

    Get PDF
    5G NR V2X has been designed to support advanced connected and automated driving V2X services. These services are characterized by variable traffic patterns that can generate packet collisions in decentralized systems where vehicles autonomously select their radio resources like 5G NR V2X mode 2. 5G NR V2X introduces a re-evaluation mechanism at the MAC layer to detect and avoid possible packet collisions before a vehicle transmits in selected resources. Most of the studies conducted to date on 5G NR V2X do not consider the re-evaluation mechanism despite being a mandatory MAC feature. This article advances the state of the art with an in-depth analysis and evaluation of the operation and performance of re-evaluation in 5G NR V2X mode 2 under different traffic patterns and mode 2 configurations. The study shows that re-evaluation is effective in avoiding collisions with periodic traffic but its effectiveness decreases with aperiodic traffic and of variable size. The study also shows that re-evaluation is effective in avoiding collisions generated by the retransmission of packets. However, its overall impact on the performance of 5G NR V2X mode 2 is small, while it can have a relevant implementation cost due to the frequent re-evaluation checks and resource reselections. This raises questions on the current design of the re-evaluation mechanism that is a mandatory feature in 5G NR V2X mode 2

    Operation and Performance of Vehicular Ad-Hoc Routing Protocols in Realistic Environments

    Get PDF
    Abstract—Vehicle-to-vehicle and vehicle-to-infrastructure wireless communications are currently under development to improve traffic efficiency and safety. Routing protocols enabling multi-hop communications represent a major technology for information dissemination within vehicular ad-hoc networks. The high node’s mobility and propagation conditions experienced by vehicle-to-vehicle communications require a careful routing protocol design to ensure its successful operation and performance under realistic environments. To this aim, this paper analyses the impact and importance of adequately considering physical layer effects to correctly quantify a routing protocol’s performance, and understand its networking operation

    End-to-End V2X Latency Modeling and Analysis in 5G Networks

    Get PDF
    networks provide higher flexibility and improved performance compared to previous cellular technologies. This has raised expectations on the possibility to support advanced Vehicle to Everything (V2X) services using the cellular network via Vehicle-to-Network (V2N) and Vehicle-to-Network-to-Vehicle (V2N2V) connections. The possibility to support critical V2X services using 5G V2N2V or V2N connections depends on their end-to-end (E2E) latency. The E2E latency of V2N2V or V2N connections depends on the particular 5G network deployment, dimensioning and configuration, in addition to the network load. To date, few studies have analyzed the capabilities of V2N2V or V2N connections to support critical V2X services, and most of them focus on the 5G radio access network or consider dedicated 5G pilot deployments under controlled conditions. This paper progresses the state-of-the-art by introducing a novel E2E latency model to quantify the latency of 5G V2N and V2N2V communications. The model includes the latency introduced at the radio, transport, core, Internet, peering points and application server (AS) when vehicles are supported by a single mobile network operator (MNO) and when they are supported by multiple MNOs. The model can quantify the latency experienced when the V2X AS is deployed from the edge of the network (using MEC platforms) to the cloud. Using this model, this study estimates the E2E latency of 5G V2N2V connections for a large variety of possible 5G network deployments and configurations. The analysis helps identify which 5G network deployments and configurations are more suitable to meet V2X latency requirements. To this aim, we consider as case study the cooperative lane change service. The conducted analysis highlights the challenge for centralized network deployments that locate the V2X AS at the cloud to meet the latency requirements of advanced V2X services. Locating the V2X AS closer to the cell edge reduces the latency. However, it requires a higher number of ASs and also a careful dimensioning of the network and its configuration to ensure sufficient network and AS resources are dedicated to serve the V2X traffic

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers
    • …
    corecore